
400G BASE-ZR Coherent QSFP-DD 80~120km LC SMF DOM Optical Transceiver Module P/N HSD1-400-ZR-DMS

Product Features

QSFP-DD MSA compliant Compliant with OIF 400ZR, version 01.0, March 10, 2020 Digital diagnostic monitoring support Hot pluggable by 76-pin electrical interface Maximum power consumption 16.5 W 400G 16QAM modulation Compact size (18.4 mm x 93.4 mm x 8.5 mm) LC duplex connector 400GBASE-R, 425 Gbps bit rate 400G-AUI-8 C2M; 8 x CEI-56G-VSR PAM-4 electrical interface Operating case temperature: 0°C to 70°C Single 3.3 V power supply RoHS 2 compliant

Applications

The SiPhx HSD1-400-ZR-DMS transceiver is intended to be used in conjunction with a host platform to support 400G transmission over optical links in DCI applications, below is the reference diagram. HSD1-400-ZR-DMS is designed for 400ZR type 1 (code 0x01) in amplified applications and type 2 (code 0x02) in unamplified applications.

Three use cases of amplified point-to-point links are identified for 400ZR. For amplified links, the reach is dependent on the OSNR (noise limited) at the receiver. The 400ZR targeted reach for these applications is 80-120 km or longer.

Transceiver line card with 400ZR amplified point to point interface

Router/Switch line card with 400ZR DWDM interfaces

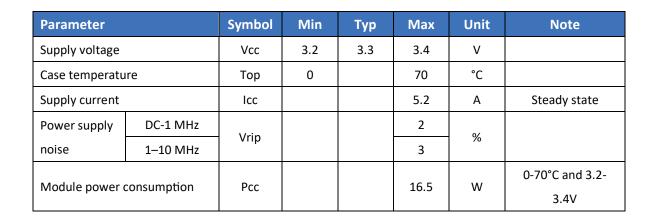
Transceiver line card with 400ZR DWDM interfaces

The following figure shows the example of an unamplified link, where the transmission distance depends on the transmit output power, input receiver sensitivity, and channel loss.

Router/Switch line card using 400ZR for an unamplified link

Product Description

The HSD1-400-ZR-DMS coherent module, compliant with the OIF 400ZR MSA and QSFP-DD MSA standards, is designed for DCI applications. The digital diagnostics function is available via an I2C interface, as specified by the QSFP-DD MSA.

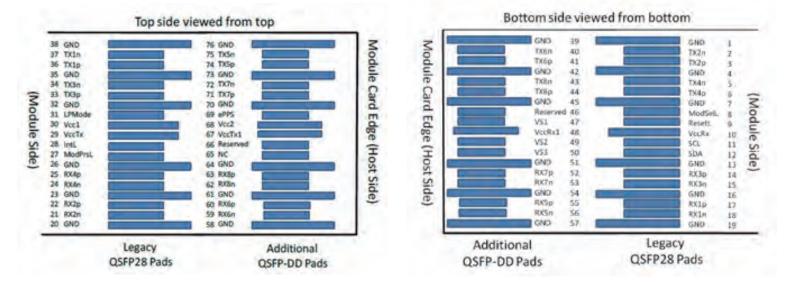

The HSD1-400-ZR-DMS is a C-band 75G/100 GHz grid coherent optical module that combines coherent DSP ASIC functionality with best in class ultra-narrow line-width tunable lasers, high speed modulators and high responsively coherent receivers to deliver high performance at 400G 16QAM modulation formats (at 60G baud rate).

Mechanical dimensions, connectors, and footprint of HSD1-400-ZR-DMS conform to QSFP-DD MSA. The module is QSFP-DD type2 size (18.4 mm x 93.4 mm x 8.5 mm) and hot pluggable by a 76-pin connector. The maximum power consumption is 16.5 W and power supply voltage is +3.3 V. The functional block diagram is shown as above.

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power supply voltage	Vcc	-0.3	3.3	3.6	V	
Storage temperature	Ts	-40		85	°C	
Relative humidity	RH	15		85	%	Non-condensing
Receiver damage threshold	PRdmg	3			dBm	

Absolute Maximum Ratings


Electrical Input/Output

Pad	Logic	Symbol	Description	Notes	39		GND	Ground	
1		GND	Ground	1	40	CML-I	Tx6n	Transmitter Inverted Data Output	
2	CML-I	Tx2n	Transmitter Inverted Data Input		41	CML-I	Тх6р	Transmitter Non-Inverted Data	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input					Output	
4		GND	Ground	1	42		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input		43	CML-I	Tx8n	Transmitter Inverted Data Output Transmitter Non-Inverted Data	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input		44	CML-I	Tx8p	Output	
7		GND	Ground	1	45		GND	Ground	
8	LVTTL-I	ModSelL	Module Select		46		Reserved	For future use	
9	LVTTL-I	ResetL	Module Reset		47		VS1	Module Vendor Specific 1	
10		VccRx	+3.3 V Power Supply Receiver	2	48		VccRx1	3.3 V Power Supply	
11	LVCMOS-	SCL	2-wire serial interface clock		49		VS2	Module Vendor Specific 2	
	I/O LVCMOS-	JCL			50		VS3	Module Vendor Specific 3	
12	I/O	SDA	2-wire serial interface data		51		GND	Ground	
13		GND	Ground	1	52	CML-0	Rx7p	Receiver Non-Inverted Data Output	
14	CML-0	Rx3p	Receiver Non-Inverted Data Output		53	CML-O	Rx7n	Receiver Inverted Data Output	
15	CML-0	Rx3n	Receiver Inverted Data Output		54		GND	Ground	
16		GND	Ground	1	55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		56	CML-O	Rx5n	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output		57		GND	Ground	
19		GND	Ground	1	58		GND	Ground	
20		GND	Ground	1	59	CML-O	Rx6n	Receiver Inverted Data Output	
21	CML-O	Rx2n	Receiver Inverted Data Output		60	CML-0	Rx6p	Receiver Non-Inverted Data Output	
22	CML-0	Rx2p	Receiver Non-Inverted Data Output		61		GND	Ground	
23		GND	Ground	1	62	CML-0	Rx8n	Receiver Inverted Data Output	
24	CML-0	Rx4n	Receiver Inverted Data Output		63	CML-0	Rx8p	Receiver Non-Inverted Data Output	
25	CML-0	Rx4p	Receiver Non-Inverted Data Output		64		GND	Ground	
26		GND	Ground	1	65		NC	No Connect	
27	LVTTL-0	ModPrsL	Module Present		66		Reserved	For future use	
28	LVTTL-0	IntL	Interrupt		67		VccTx1	3.3 V Power Supply	
29		VccTx	+3.3 V Power supply transmitter	2	68		Vcc2	3.3 V Power Supply	
30		Vcc1	+3.3 V Power supply	2	69		ePPS	Precision Time Protocol (PTP)	
21		InitMode	Initialization mode; In legacy QSFP		70		GND	reference clock input. It is not used Ground	
31	LVTTL-I	InitMode	applications, the InitMode pad is called LPMODE		70	CML-I	Tx7p	Transmitter Non-Inverted Data Input	
32		GND	Ground	1	71	CML-I	Tx7p	Transmitter Inverted Data Input	
33	CML-I	Tx3p	Transmitter Non-Inverted Data		72	CIVIL-I	GND	Ground	
34	CML-I	Tx3n	Output Transmitter Inverted Data Output		73	CML-I	Tx5p	Transmitter Non-Inverted Data Input	
35		GND	Ground	1	75	CML-I	Tx5n	Transmitter Inverted Data Input	
	<u></u>		Transmitter Non-Inverted Data	-	76		GND	Ground	
36	CML-I	Tx1p	Output					Ground	
37	CML-I	Tx1n	Transmitter Inverted Data Output						
38		GND	Ground	1					

- 4 -

400G Transceiver Series

1. *QSFP-DD* uses common ground (GND) for all signals and power supplies. All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect common ground directly to the host board signal-common ground plane.

2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the host card edge connector are listed in Error! Reference source not found.. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor

ow Speed Control and Sense Signals

Parameter	Symbol	Min	Max	Unit	Condition
	V _{OL}	0	0.4	v	I _{OL} (max) = 3 mA for fast-mode, 20 mA for fast-mode plus
SCL and SDA	V _{OH}	V _{cc} -0.5	V _{cc} +0.3	v	
	V _{IL}	-0.3	Vcc*0.3	V	
	V _{IH}	V _{cc} *0.7	V _{cc} +0.5	V	
Capacitance for SCL and SDA I/O signal	C _i		14	рF	
Total bus capacitive load for SCL and SDA			100	pF	For 400 kHz clock rate, use 3000 ohms pull-up resistor, max. For 1000 kHz clock rate, refer to Error! Reference source not found
	Cb		200	pF	For 400 kHz clock rate, use 1600 ohms pull-up resistor, max. For 1000 kHz clock rate, refer to Error! Reference source not found
	V _{IL}	-0.3	0.8	V	
InitMode, ResetL and ModSelL	V _{IH}	2	V _{cc} +0.3	V	
	I _{in}		360	uA	$0 V < V_{in} < V_{cc}$
	V _{OL}	0	0.4	V	I _{OL} = 2.0 mA
IntL	V _{OH}	V _{cc} -0.5	V _{cc} +0.3	V	10,000 ohms pull up to V _{cc} Host
	V _{OL}	0	0.4	V	IOL = 2.0 mA
ModPrsL	V _{OH}				ModPrsL can be implemented as a short-circuit to GND on the module.

High-Speed Electrical Specifications

The transmitter and receiver comply with the CEI-56G-VSR-PAM4 electrical specifications. The data lines are AC-coupled inside the module.

Parameter	Symbol	Min	Тур	Max	Unit	Note
40	0GAUI-8 Electric	al Characte	ristics			
	Transn	nitter				
Signaling rate, each lane			26.5625		GBd	PAM4
Differential voltage pk-pk	Vin,pp			880	mV	
Common mode voltage	Vcm	-0.3		2.8	V	
Common mode noise	RMS			17.5	mV	
Differential termination resistance mismatch				10	%	
Transition time	T _r /T _f	12			ps	20%-80%
Eye width at 10-6 probability	EW6	0.2			UI	
Eye height at at 10-6 probability	EH6	32			mV	
Eye linearity		0.85				
	Rece	iver				
Signaling rate, each lane			26.5625		GBd	PAM4
Differential voltage pk-pk	V _{out,pp}			900	mV	
Transition time	T _r /T _f	9.5			ps	20%-80%
Near-end eye width at 10-6 probability	EW6	0.265			UI	
Near-end eye height at 10-6 probability	EH6	70			mV	
Far-end eye width at 10-6 probability	EW6	0.2			UI	
Far-end eye height at 10-6 probability	EH6	30			mV	
Near-end eye linearity		0.85				

Note: 400GAUI-8 electrical characteristics refer to CEI-56G-VSR-PAM4 of OIF-CEI-04.0

General Optical Specifications

Parameter	Default	Min	Max	Unit	Conditions/Comments
Channel frequency	193.7	191.3	196.1	THz	ITU-T grid. The frequency is fixed at 193.7
channel frequency	195.7	191.5	190.1	1112	THz for unamplified link applications.
Channel and sing	100	100		GHz	ITU-T G694.1 section 6.
Channel spacing	75	75		GHz	ITU-T G694.1 section 6.
Fiberture	C (F2)				Single mode fiber. Specified for link
Fiber type	G.652				budgeting purposes only.
Target reach		80		km	Amplified link – Noise limited

For channel spacing of 100 GHz on a fiber, the allowed channel frequencies (in THz) are defined by $193.1 + n \ge 0.1$ where n is a positive or negative integer including 0. For 400ZR modules, n = 30 to -17 in steps of 1. The specified 48 x 100 GHz DWDM application channels are as defined below.

Index	n (from ITU-T G.694.1)	Frequency (THz)
1	30	196.100
2	29	196.000
3	28	195.900
÷		i
46	-15	191.600
47	-16	191.500
48	-17	191.400

For channel spacing of 75 GHz or more on a fiber, the allowed channel frequencies (in THz) are defined by $193.1 + 3n \ge 0.025$ where n is a positive or negative integer including 0. For 400ZR modules, 3n = 120 to -69. The reference 64 ≥ 75 GHz DWDM application channels are defined as below.

Index	n (from ITU-T G.694.1)	Frequency (THz)
1	120	196.100
2	117	196.025
3	114	195.950
i		÷
62	-63	191.525
63	-66	191.450
64	-69	191.375

Transmitter Optical Specifications

Parameter	Min	Тур	Max	Unit	Conditions/Comments
Transmitter frequency range	191.3	193.7	196.1	THz	ITU-T grid. Frequency range over which the specifications hold unless noted otherwise. The frequency is fixed at 193.7 THz for unamplified link applications.
Transmitter laser frequency stability	-1.8		1.8	GHz	Offset from channel frequency set point. The receiver LO has the same frequency accuracy.
Transmitter laser frequency stability	-1.8		1.8	GHz	Offset from channel frequency set point. The receiver LO has the same frequency accuracy.
Transmitter output power	-10		-6	dBm	Measured at optical connector.
Transmitter output power with TX disabled			-20	dBm	Max Output power with TX_DIS asserted
Transmitter output power during wavelength switching			-20	dBm	
Transmitter reflectance			-20	dB	Loss of power in the returned/reflected optical signal
Mean I-Q amplitude imbalance			1	dB	
Transmitter polarization dependent power			1.5	dB	Power difference between X and Y polarization

Receiver Optical Specifications

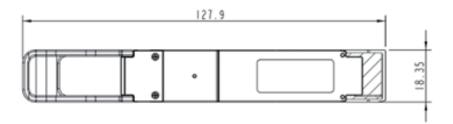
Parameter	Min	Max	Unit	Conditions/Comments
Frequency offset between RX and LO	-3.6	3.6	GHz	Acquisition Range
Input power range	-12	0	dBm	
Input sensitivity (amplified link application)	-12		dBm	
Input sensitivity (unamplified link application)	-20		dBm	For unamplified link applications, the minimum input power is −20 dBm @receiver OSNR tolerance ≥ 34 dB.
OSNR tolerance (amplified link		26	dB/0.1	The OSNR tolerance is referenced to an optical
application)		20	nm	bandwidth of 0.1 nm @193.7 THz or 12.5 GHz.
OSNR tolerance (unamplified link	24		dB/0.1	The OSNR tolerance cannot be less than 34 dB for
application)	34		nm	unamplified link applications.
Optical return loss	20		dB	Optical reflectance at connector input
CD Tolerance	2400		ps/nm	Tolerance to chromatic dispersion
				OSNR penalty tolerance due to –35 dB
Optical path power penalty		0.5	dB	interferometric crosstalk and 2400 ps/nm
				chromatic dispersion.
				Tolerance to PMD with \leq 0.5 dB penalty to OSNR
PMD tolerance	10		ps	sensitivity. 10 ps of PMD corresponds to max 30
				ps of DGD and max 500 ps2 of SOPMD
PDL tolerance (amplified link	3.5		dB	Tolerance to PDL with < 1.3 dB penalty to OSNR
application)	5.5		uБ	sensitivity When change in PSP is \leq 1 rad/ms.
DDI televenes (unemplified link				The PDL tolerance is 2.5 dB in unamplified link
PDL tolerance (unamplified link	2.5		dB	application when the receiver OSNR sensitivity
application)				penalty is 0.8 dB.
				Tolerance to change in SOP with \leq 0.5 dB penalty
Talaranca ta changa in SOD	50		krad /c	to OSNR sensitivity. Measurement relative to
Tolerance to change in SOP	50		krad/s	reference with 10 ps PMD and 2.5 dB PDL and SOP
				of < 1 rad/ms under the same conditions.
				Tolerance to change in input power with \leq 0.5 dB
Optical input power transient			dp	penalty to OSNR sensitivity. Received power is
tolerance	+/-2		dB	within –12 dBm to 0 dBm. Rise/fall times of power
				change defined by 20%–80% of 50 μs or slower.

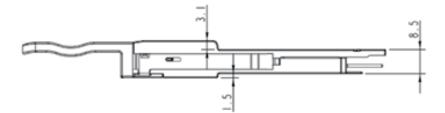
400G Transceiver Series

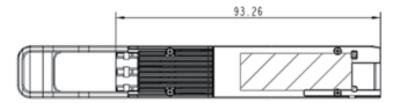
Transmitter Specifications

Parameter	Min	Max	Unit	Conditions/Comments
				The maximum transmitter turn-off time from any
Transmitter laser disable time		100		condition that results in Tx_Disable == true to reach the
		100	ms	Tx output power −20 dBm.
				Rx shall remain locked and thus LO must remain enabled.
Transmitter turn-up time from		180	Sec	The maximum time from ModuleLowPwr to
warm start		180	Sec	DataPathActivated state.
Transmitter turn-up time from		200 6.55		The maximum time from deassertion of ResetS == false to
cold start		200	Sec	DataPathActivated state while LoPwrS == false.
Transmitter wavelength		100		The maximum time to change wavelengths including turn-
switching time		180	Sec	up time.
Transmitter wavelength		100		The maximum time to change wavelengths including turn-
switching time		180	Sec	up time.
				Total output power measurement including all ASE
Output power monitor-Accuracy	-2	2	dB	contribution. Measurement accuracy does not contribute
				to allowable output power signal window

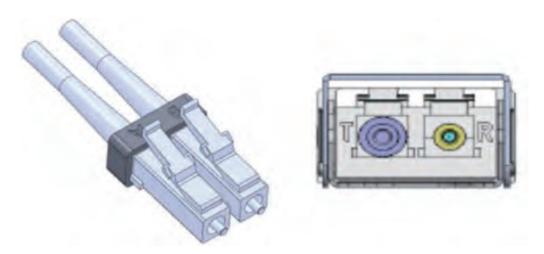
Receiver Specifications




Parameter	Default	Min	Max	Unit	Conditions/Comments
Receiver turn-up time from			10	Sec.	Upon Rx_LOS de-assert, Receiver has
warm start			10	Sec.	been turned up previously.
Receiver turn-up time from cold			200	Sec.	From module reset, with valid optical
start			200	Sec.	input signal present.
Input total nowar manitar					Over the superset of input power,
Input total power monitor-		-4	4	dB	receiver sensitivity and the optical
Accuracy					Rx_LOS assert threshold range.
Input channel power monitor -		-4	4	dB	The module reports the channel power
Accuracy		-4	4	uв	as received by the module.
Optical LOS assert threshold	-18	-20	-16	dBm	Tatal nowar
(amplified link application)	-18	-20	-10	иып	Total power
Optical LOS assert threshold	20	20	24	dDaa	Tatal source
(unamplified link application)	-26	-28	-24	dBm	Total power
Optical LOS hysteresis		1	2.5	dBm	RX LOS cleared


400G Transceiver Series

Mechanical Dimensions



Optical Interface

The dual LC optical patch cord and module receptacle is specified in TIA-604-10 and shown below

This is a Class 1 Laser Product as defined by IEC 60825-1:2014. When operated within the limits of this specification it is considered non-hazardous. Operating this product in a manner inconsistent with specifications and intended usage may result in hazardous radiation exposure.

Ordering Information

Part No.	Data Rate	Wavelength	Max Distance	Case Temperature Range	
HSD1-400-ZR-DMS	400Gbps	DWDM	120km	0°C to 70°C	

SiPhx reserves the right to change the specifications of the products identified in this datasheet without prior notice. The applications described herein are for illustrative purposes only, and SiPhx does not guarantee that the identified products will be suitable for the described applications without further testing and/or modification.

