

400G BASE-SR8 QSFP-DD PAM4 850nm 100m DOM MTP/MPO MMF Optical Transceiver Module P/N HSD1-400-SR-C5S

Product Features

- Hot pluggable QSFP-DD form factor
- Supports 400Gb/s aggregate bit rate
- Up to 53.125Gbps data rate per channel
- Maximum link length of 70m on OM3 and 100m on OM4
- MPO connector receptacle
- Case temperature range: 0 ~ +70°C
- Power dissipation: <10W</p>
- Single 3.3V power supply
- Compliant to QSFP-DD MSA
- Compliant with IEEE 802.3cd
- RoHS complaint

Product Description

This is a hot-pluggable QSFP-DD transceiver for 400G links over multimode fiber. It is a high-performance module for short-range data communication and interconnect applications, operating at 400Gbps up to 70m using OM3 multimode fiber or 100m using OM4 multimode fiber. This module is designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 76-pin connector, while the optical interface employs an MPO connector.

Applications

- 400GBASE-SR8 400G Ethernet
- Data Center

Figure 1 Transceiver block diagram

P/N	HSD1-400-SR-C5S		
Form Factor	QSFP-DD		
Wavelength	840 <i>,</i> 860nm		
Connector	MTP/MPO-16		
Max Cable Distance	70m@OM3, 100m@OM4		
Commercial Temperature Range	0°C~70°C		

Pin Descriptions

The edge connector for the QSFP-DD SR8 module consists of a single paddle card featuring 38 pads on the top and an additional 38 pads on the bottom, totaling 76 pads. These pads are designed in such a way that they can accommodate the insertion of a QSFP module into a QSFP-DD receptacle.

Pin	Logic	Symbol	Description	Notes	39		GND	Ground	1
1		GND	Ground	1	40	CML-I	Tx6n	Transmitter Inverted Data Input	
2	CML-I	Tx2n	Transmitter Inverted Data Input		41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input		42		GND	Ground	1
4		GND	Ground	1	43	CML-I	Tx8n	Transmitter Inverted Data Input	
5	CML-I	Tx4n	Transmitter Inverted Data Input		44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input		45		GND	Ground	1
7		GND	Ground	1	46		Reserved	For Future Use, No Connect	
8	LVTTL-I	ModSelL	Module Select		47		VS1	Module Vendor Specific 1, No	
9	LVTTL-I	ResetL	Module Reset		19		VccPv1	Connect	2
10		VccRx	+3.3 V Power Supply	2	40		VCCRXI	Hodula Vender Specific 2	2
11	LVCMOS-I/O	SCL	2-wire Serial Interface Clock		49 50		V32 V92	Module Vendor Specific 2	
12	LVCMOS-I/O	SDA	2-wire Serial Interface Data		50				1
13		GND	Ground	1	51			Boosiver Nep Inverted Date Output	-
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		52		Rx/p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output		53	CML-0			4
16		GND	Ground	1	54	014 0	GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output		56	CML-O	Rx5n	Receiver Inverted Data Output	
19		GND	Ground	1	57		GND	Ground	1
20		GND	Ground	1	58		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output		59	CML-O	Rx6n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
23		GND	Ground	1	61		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output		62	CML-O	Rx8n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output		63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
26		GND	Ground	1	64		GND	Ground	1
27	I VTTI -O	ModPrsl	Module Present	-	65		NC	No Connect	
28	I VTTI -O	Intl			66		Reserved	For Future Use, No Connect	
29		VccTx	+3.3 V Power Supply	2	67		VccTx1	+3.3 V Power Supply	2
30		Vcc1	+3.3 V Power Supply	2	68		Vcc2	+3.3 V Power Supply	2
31	I VTTI -I	I PMode	Low Power Mode		69		Reserved	For Future Use, No Connect	
32		GND	Ground	1	70		GND	Ground	1
33	CML-I	Tx3n	Transmitter Non-Inverted Data Input		71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	
34		Tx3n	Transmitter Inverted Data Input		72	CML-I	Tx7n	Transmitter Inverted Data Input	
35		GND	Ground	1	73		GND	Ground	1
36	CMI-I	Ty1n	Transmitter Non-Inverted Data Input		74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	
37			Transmitter Inverted Data Input		75	CML-I	Tx5n	Transmitter Inverted Data Input	
20			Ground	1	76		GND	Ground	1
30			Ground	1					

Notes:

1.QSFP-DD uses a common ground (GND) for all signals and power supply. All these aspects are common within the QSFP-DD module, and all module voltages are referenced to this potential unless otherwise noted. Please connect these directly to the host board's signal-common ground plane. 2.VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 should be applied concurrently. VccRx, VccRx1, Vcc1, Vcc2, VccTx1 may be internally connected within the module in any combination. Each Vcc pin on the connector is rated for a maximum current of 1000 mA.

Bottom side viewed from bottom

Absolute Maximum Ratings

Please note that operating this module beyond any individual absolute maximum ratings might cause permanent damage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum supply voltage	Vcc	-0.3	3.3	3.6	V	
Storage temperature	Ts	-40		85	°C	
Relative humidity	RH	5		85	%	1
Damage threshold, each lane	THd	5			dBm	

Operating Environments

The electrical and optical characteristics listed below are defined under these operating conditions, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply voltage	Vcc	3.135	3.3	3.465	V	
Case temperature	Тс	0		70	°C	
Data rate, each lane			26.5625		GBd	
Data rate accuracy		-100		100	ppm	
Modulation format			PAM4			
Link distance with OM3 MMF				70	m	
Link distance with OM4 MMF				100	m	
Link distance with OM5 MMF				100	m	

Note:

Initialization Flows: We recommend following the Host Initialization Flows outlined in

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power dissipation			9	10	W	
Steady state current	lcc			3189	mA	1
Instantaneous peak current				4000	mA	
Sustained peak current				3300	mA	
Module-to-Host electrical spec	ifications a	at TP4	(module o	utput)		
Differential voltage pk-pk	Vpp			900	mV	
Common mode voltage	Vcm	-350		2850	mV	2
AC common-mode output voltage (RMS)				17.5	mV	
Transition time	Trise/Tfall	9.5			ps	20%~80%
Differential termination resistance mismatch				10	%	
Near-end ESMW (eye symmetry mask width)			0.265		UI	
Near-end eye height, differential		70			mV	
Far-end ESMW (eye symmetry mask width)		0.2			UI	
Far-end eye height, differential		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	%	
Differential output return loss		IEEE 802.3-2018 Equation (83E-2)		dB		
Common to differential mode con-version return loss		IEEE 802.3-2018 Equation (83E-3)			dB	
Host-to-Module electrical s	specificatio	ons (m	odule inpu	t)		
Differential termination resistance mismatch				10	%	
Overload differential voltage pk-pk	Vpp	900			mV	TP1a
DC common mode voltage	Vcm	-350		2850	mV	TP1
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Single-ended voltage tolerance		-0.4		3.3	V	TP1a
Module stressed input test		IEEE	802.3bs 12	20E.3.4.1		TP1a
Differential input return loss		IEEE	802.3-2018 (83E-5	B Equation	dB	TP1
Differential to common mode input return loss		IEEE	802.3-2018 (83E-6)	B Equation	dB	TP1

Notes:

1. The module must operate within its declared power class.

2. The host generates the DC common mode voltage. This specification includes the effects of ground offset voltage.

Optical Characteristics

Parameters	Symbol	Min. Typ. Max.		Max.	Unit	Notes		
Center wavelength	λο	840		868	nm			
	Tra	nsmitte	er					
RMS spectral width				0.65	nm			
Average launch power, each lane	Pavg	-6.5		4	dBm			
Outer optical modulation amplitude (OMA _{outer}), each lane	Рома	-4.5		3	dBm			
Launch power in OMA outer minus TDECQ, each lane		-5.9			dBm			
Transmitter and dispersion eye closure for PAM4, each lane	TDECQ			4.5	dB			
TDECQ – 10log ₁₀ (C _{eq}), each lane				4.5	dB			
Extinction ratio, each lane	ER	3			dB			
Transmitter transition time, each lane				34	ps			
Average launch power of OFF transmitter, each lane	POFF			-30	dBm			
RIN12OMA				-128	dB/Hz			
Optical return loss tolerance				12	dB			
Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes		
Encircled flux			≥ :	86% at 19 um				
			≤ (30% at 4.5 um				
	Receiver							
Average receiver power, each lane		-8.4		4	dBm			
Receiver power, each lane (OMA)				3	dBm			
Damage threshold, each lane	THd	5			dBm			
Receiver reflectance				-12	dB			
LOS assert	LosA	-24.6			dBm			
LOS de-assert	LosD			-8	dBm			
LOS hysteresis	LosH	0.5			dB			
Receiver sensitivity (OMA _{outer}), each Iane	Sen			Max (–6.5,SECQ –7.9)	dB			
Stressed receiver sensitivity (OMA) , each lane	SRS			-3.4	dBm			
Conditions of	of stresse	d rece	iver s	ensitivity test				
Stressed eye closure for PAM4, lane under test	SECQ			4.5	dB			
SECQ – $10log_{10}$ (C _{eq}), lane under test				4.5	dB			
OMA outer of each addressor lane				3	dBm			

EEPROM Definitions

Refer to the CMIS Rev4.0 used for QSFP-DD.

Digital Diagnostic Monitoring Functions

The Digital Diagnostic Management Interface (DDMI) is realized through an I2C interface in compliance with CMIS 4.0. The diagnostic management functions are implemented, and the data addresses are listed below.

Performance item	Related bytes	Monitor error	Notes
Module temperature	Lower Page (14 to 15)	< + 3°C	1 2
			.,_
Module voltage	Lower Page (16 to 17)	≤±3%	2
Transmitter optical power	Upper Page11h (154 to 169)	≤ ±3 dB	2
Bias current	Upper Page11h (170 to 185)	≤ ± 10%	2
Receiver optical power	Upper Page11h (186 to 201)	≤ ±3 dB	2

Note:

1. The actual temperature test point is located on the module case around the laser array.

2. The module operates within the full temperature range.

listed below.

Digital Diagnostic Monitoring Functions

HSD1-400-SR-C5S supports alarm functions, which are triggered when the values of the preceding basic performance measurements fall below or exceed the specified thresholds.

Performance item	Alarm threshold bytes (Page02h memory)	Unit	Low threshold	High threshold
Temperature warning	132 to 135	°C	0	70
Voltage warning	140 to 143	V	3.135	3.465
lbias warning	188 to 191	188 to 191 mA		8.5
Tx power warning	180 to 183	dBm	-6.5	5.5
Rx power warning	196 to 199	dBm	-7	5.5
Temperature alarm	128 to 131	°C	-10	80
Voltage alarm	136 to 139	V	2.97	3.63
lbias alarm	184 to 187	mA	4	9.5
Tx power alarm	176 to 179	dBm	-9.5	7
Rx power alarm	192 to 195	dBm	-10	7

400G Transceiver Series

Mechanical Specifications

Figure 3 HSD1-400-SR-C5S mechanical dimensions

Optical Interface

The optical interface port for the QSFP-DD 400GE SR8 shall be a male MPO-16 APC receptacle. Figure 4 shows the recommended location and numbering of the optical ports for each media-dependent interface. When looking into the MDI receptacle with the connector keyway feature on top, the transmitter and receiver optical lanes should occupy the positions depicted in Figure 4.

Figure 4 Optical media dependent interface port assignments

Regulatory Compliance

The QSFP-DD 400GE SR8 optical transceiver is RoHS 2.0 compliant and complies with international electromagnetic compatibility (EMC) and product safety requirements and standards.

Feature	Agency	Standard	Performance
	NRTL	UL 62368-1 CAN/CSA C22.2 No. 62368-1	NRTL recognized component for US and Canada
Safety	TUV	EN 62368-1 IEC 60825-1:2014 EN 60825-1:2014 IEC 60825-2:2004+A1:2006+A2:2010 EN 60825-2:2004+A1:2006+A2:2010	TUV certificate
	FDA	U.S. 21 CFR 1040.10	The QSFP-DD 400GE SR8 optical transceiver is FDA/CDRH certified and has been assigned an accession number in accordance with Laser Notice 56.
Electromagnetic Compatibility	Radiated emissions	EMC Directive 2014/30/EU EN 55032 CISPR 32 FCC rules 47 CFR Part 15 ICES-003 AS/NZS CISPR 32	The QSFP-DD 400GE SR8 optical transceiver is classified as a Class B digital device with a minimum -6dB margin to the limit when tested with a metal enclosure. The final margin may vary depending on the system application. To achieve Class B margins at the system level, it is essential to follow good system EMI design practices, such as using a suitable metal enclosure and ensuring proper bonding. The transceiver has been tested within a frequency range of 30 MHz to 40 GHz or the 5th harmonic (5 times the highest frequency), whichever is less.
	ESD	EMC Directive 2014/30/EU EN 55035 CISPR 35 IEC/EN 61000-4-2	Withstands discharges of ± 8 kV contact, ± 15 kV air.
	Radiated immunity	EMC Directive 2014/30/EU EN 55035 CISPR 35 IEC/EN 61000-4-3	Field strength of 10 V/m from 80 MHz to 6 GHz.
Restriction of Hazardous Substances	RoHS	EU Directive 2011/65/EU (EU) 2015/863	

China RoHS Hazardous Substance

产品满足中国 RoHS 的要求:

郭 件夕泰	产品中有害物质的名称及含量									
	镉	铅	汞	六价铬	多溴联苯	多溴二苯醚				
机柜/插框	0	\times	0	0	0	0				
PCBA	0	\times	0	0	0	0				
辅料	0	\times	0	0	0	О				
配套设备	0	×	0	0	0	0				

ESD Design

Standard ESD precautions must be taken while handling this module. The transceiver is shipped in ESD-protective packaging and should be removed from this packaging within an ESD-protected environment. This environment should include standard grounded benches, floor mats, and wrist straps.

Parameter	Value	Notes
ESD of all the QSFP-DD module pins	1 kV	Human body model
Air discharge during operation	15 kV	
Direct contact discharges to the case	8 kV	

Safety Specification Design

Do not look directly into the fiber end faces without using eye protection or an optical meter (such as a magnifier or microscope) within 100 mm, unless you have ensured that the laser output is disabled. When operating an optical meter, follow the operation requirements.

CAUTION - Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Laser Safety

This is a Class 1 Laser Product as defined by IEC 60825-1:2014. When operated within the limits of this specification it is considered non-hazardous. Operating this product in a manner inconsistent with specifications and intended usage may result in hazardous radiation exposure.

400G Transceiver Series

Ordering Information

Part No.	Data Rate	Wavelength	Max Distance	Case Temperature Range
HSD1-400-SR-C5S	400Gbps	850nm	100m	0°C to 70°C

Notice

SiPhx reserves the right to change the specifications of the products identified in this datasheet without prior notice. The applications described herein are for illustrative purposes only, and SiPhx does not guarantee that the identified products will be suitable for the described applications without further testing and/or modification.

〒300-3257 茨城県つくば市筑穂1-14-2

029-886-6851 info@siphx.com https://siphx.com

SiPhx, Inc. 1-14-2 TSUKUHO, TSUKUBA, IBARAKI 300-3257, Japan info@siphx.com